PYTORCH
AMPERE® Al OPTIMIZER (AlO)

Documentation

V.1.1

AMPERE COMPUTING



A

AMPERE.

Table of Contents



OVERVIEW

The Ampere® AIO inference acceleration engine is fully integrated with the PyTorch framework.
PyTorch models and software written with the PyTorch APl can be run as-is.

PYTORCH FRAMEWORK

Python is installed with the AlO accelerated Pytorch package, together with all dependencies.
No additional installation steps are needed.

Versions Compatibility

This release is based on Pytorch 1.9.0 and comes with the compatible Torchvision 0.10.0
installed.

Python

Pytorch 1.9.0 is built for Python 3.8. Regarding other Python versions, please contact your
Ampere sales representative. If you are using the software through a third party, contact their
customer support team for help. You can also contact the Al team at
ai-support@amperecomputing.com.

AlO CONFIGURATIONS

The AIO inference engine can be configured by a set of environment variables for performance
and debugging purposes. They can be set in the command line when running Pytorch models
(e.g. AIO_NUM_THREADS=16 python run.py -p fp32) or set in the shell initialization script.

AlO_PROCESS_MODE

This variable controls if the AlO inference engine is used in running the Pytorch model.
e 0:AlOis disabled

e 1:AlOis enabled (Default)

AlO_CPU_BIND

Enables core binding. If enabled, each AIO thread will bind itself to a single core.

e 0: Core binding disabled

e 1: Core binding enabled (Default)



AIO_MEM_BIND

Bind memory to NUMA (Non-uniform memory access) node 0. For optimal performance,
numactl (https://linux.die.net/man/8/numactl) is preferred. numactl bind will affect both the
Pytorch framework and AlO buffers, while AlO is unable to affect buffers allocated by the
Pytorch framework.

e 0: Membind disabled

e 1: Membind to node 0 (Default)

AIO_NUMA_CPUS

Select the cores that AlIO should bind to (if CPU_BIND is enabled).

e Not set: AlO will use the first N cores of the machine, excluding hyper-threaded (Default)

e Set: AIO will try to use N first cores from the list of cores for N threads. The list is in space
separated, 0-based number format. For example, selecting cores 0 to 1:
AIO_NUMA_CPUS="0 1"

AlO_NUM_THREADS

Specifies the number of cores that the AlIO should use.
e Not set: the AlO will use one core (Default)

o "all": the AIO will use all cores, as specified by AIO_NUMA_CPUS
e N:the AIO will use N cores

AlO_DEBUG_MODE

Control the verbosity of debug messages.

e 0: No messages

e 1:Errorsonly

e 2:Basic information, warnings, and errors (Default)
e 3: Most messages

o 4: All messages


https://linux.die.net/man/8/numactl

QUICKSTART
The following instructions run on Altra/Altra Max Linux machines installed with
Docker. To initialize the AlO environment run:

S wget -0 aio-pytorch.tar.gz “<your_unique_url>"
S docker load < aio-pytorch.tar.gz
S docker run --privileged=true --rm --name pytorch-aio --network host -it aio-pytorch-1.9.0:1.0.0

Skip the above steps if running without a Docker container.

You can try AlO by either running the Jupyter Notebook examples or Python
scripts on the CLI level.

To run the Jupyter Notebook QuickStart examples follow the instructions below:

Set AIO_NUM_THREADS to requested value first.

S export AlO_NUM_THREADS=16
S cd ~/aio-examples/
S bash start_notebook.sh

If you run the Jupyter Notebook Quickstart on a cloud instance, make sure your machine has
port 8080 open and on your local device run:

S ssh -N -L 8080:localhost:8080 -I <ssh_key> your_user@xxx.XXX.XXX.XXX
Use a browser to point to the URL printed out by the Jupyter Notebook launcher.

You will find Jupyter Notebook examples (examples.ipynb) under the /classification and
/object detection folders.

The examples run through several inference models, visualize results they produce,
and present the performance numbers.

To use CLI-level scripts:
Set AIO_NUM_THREADS to the requested value first.

$ export AIO_NUM_THREADS=16
S cd ~/aio-examples/

Go to the directory of choice, e.g.

S cd classification/resnet_50_v1

Evaluate the model.

S numactl --physcpubind=0-15 python3 run.py -p fp32



Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 /
www.amperecomputing.com

Ampere Computing, the Ampere Computing logo, Altra, and eMAG are registered trademarks of Ampere Computing.

Arm is a registered trademark of Arm Holdings in the US and/or elsewhere. All other trademarks are the property of their respective owners.
©2022 Ampere Computing. All rights reserved.

AMP 2019-0039


http://www.amperecomputing.com/

