
AMPERE COMPUTING

PYTORCH
AMPERE® OPTIMIZED

FRAMEWORK
Documentation

V.1.3.0

1

Table of Contents
RELEASE NOTES .. 2

OVERVIEW ... 2

PYTORCH FRAMEWORK .. 2
Versions Compatibility ... 2

PYTHON ... 3

CONFIGURATIONS .. 3

QUICKSTART ... 4

AMPERE OPTIMIZED PYTORCH PROGRAMMING GUIDE .. 5
Overview ... 5
Supported Inference Ops .. 6
PyTorch JIT Trace .. 7
Threading .. 7
Programming Tips ... 7

2

RELEASE NOTES

V1.3.0:

• Binary integer operations support.

• New operators supported: Reshape, Squeeze, Unsqueeze, Flatten, PixelShuffle, GroupNorm,
InstanceNorm.

• Using custom compiled OpenBLAS, as Pytorch BLAS backend.

• Bug fixes

V1.2.0:

• Ampere Optimized PyTorch updated to 0.3.0

• New optimized operators: Gelu, Silu, Softmax, Div, Binary ops between Tensor and Scalar,
Permute, View, Layer Norm, Size, Pow, Tanh, Sigmoid

• Improved Concat support

• Graph optimizations

• Various bugfixes

V1.1.0:

• Ampere Optimized PyTorch updated to 0.2.1

• Batch Matmul supported (enhancing DLRM performance)

• Adaptive Avg Pool supported

• LeakyRelu supported

• AIO_NUM_THREADS no longer needed to set Ampere Optimized PyTorch threads, inherits Pytorch
intra-op thread count.

OVERVIEW

Ampere Optimized PyTorch inference acceleration engine is fully integrated with the PyTorch
framework. PyTorch models and software written with the PyTorch API can run as-is, without
modifications.

PYTORCH FRAMEWORK

Python is installed with Ampere Optimized PyTorch and all dependencies. No additional installation
steps are needed.

Versions Compatibility

This release is based on Pytorch 1.11.0 and comes with the compatible Torchvision 0.12.0
installed.

3

PYTHON

Pytorch 1.11.0 is built for Python 3.8. Regarding other Python versions, please contact your Ampere
sales representative. If you are using the software through a third party, contact their customer
support team for help. You can also contact the AI team at
ai-support@amperecomputing.com.

CONFIGURATIONS

Ampere Optimized PyTorch inference engine can be configured by a set of environment variables
for performance and debugging purposes. They can be set in the command line when running
Pytorch models (e.g., AIO_NUM_THREADS=16 python run.py -p fp32) or set in the shell initialization script.

AIO_PROCESS_MODE

This variable controls whether the Ampere Optimized PyTorch inference engine is used to run the
Pytorch model:

• 0: disabled.

• 1: enabled (Default).

AIO_CPU_BIND

Enables core binding. If enabled, each Ampere Optimized PyTorch thread will bind itself to a single
core:

• 0: Core binding disabled.

• 1: Core binding enabled (Default).

AIO_MEM_BIND

Binds memory to NUMA (Non-uniform memory access) node 0. For optimal performance, numactl
(https://linux.die.net/man/8/numactl) is preferred. numactl bind will affect both the Pytorch
framework and the optimized framework buffers, while the optimized framework is unable to affect
buffers allocated by the Pytorch framework:

• 0: Membind disabled.

• 1: Membind to node 0 (Default).

AIO_NUMA_CPUS

Select the cores that Ampere Optimized PyTorch should bind to (if CPU_BIND is enabled):

• Not set: use the first N cores of the machine, excluding hyper-threaded (Default).

• Set: use N first cores from the list of cores for N threads. The list is in space separated, 0-based
number format. For example, selecting cores 0 to 1: AIO_NUMA_CPUS="0 1".

https://linux.die.net/man/8/numactl
https://linux.die.net/man/8/numactl

4

AIO_DEBUG_MODE

Control the verbosity of debug messages:

• 0: No messages

• 1: Errors only

• 2: Basic information, warnings, and errors (Default)

• 3: Most messages

• 4: All messages

QUICKSTART

The following instructions run on Altra/Altra Max Linux machines installed with Docker. To initialize
Ampere Optimized PyTorch environment run:

$ wget -O aio-pytorch.tar.gz “<your_unique_url>”
$ docker load < aio-pytorch.tar.gz
$ docker run --privileged=true --rm --name pytorch-aio --network host -it aio-pytorch-1.11.0:1.3.0

Skip the above steps if running without a Docker container.

You can try Ampere Optimized PyTorch by either running the Jupyter Notebook examples or Python
scripts on the CLI level.

To run the Jupyter Notebook QuickStart examples follow the instructions below:

Set AIO_NUM_THREADS to the requested value first.

$ export AIO_NUM_THREADS=16; export OMP_NUM_THREADS=16
$ cd /workspace/aio-examples/
$ bash start_notebook.sh

If you run the Jupyter Notebook Quickstart on a cloud instance, make sure your machine has port
8080 open and on your local device run:

$ ssh -N -L 8080:localhost:8080 -I <ssh_key> your_user@xxx.xxx.xxx.xxx

Use a browser to point to the URL printed out by the Jupyter Notebook launcher.

You will find Jupyter Notebook examples (examples.ipynb) under the /classification and /object
detection folders.

The examples run through several inference models, visualize results they produce, and present the
performance numbers.

5

To use CLI-level scripts:

Set AIO_NUM_THREADS to the requested value first.

$ export AIO_NUM_THREADS=16; export OMP_NUM_TREADS=16
$ cd /workspace/aio-examples/

Go to the directory of choice, e.g.

$ cd classification/resnet_50_v1

Evaluate the model.

$ numactl --physcpubind=0-15 python3 run.py -p fp32

AMPERE OPTIMIZED PYTORCH PROGRAMMING GUIDE

Overview

Ampere Optimized PyTorch is powered by Ampere® AI backend that accelerates Deep Learning (DL)
operations on the Ampere® Altra family of processors. Ampere Optimized PyTorch accelerates DL
operations through model optimization, highly vectorized compute kernels and multi-thread
operations that are automatically tuned to deliver the best latency and throughput on Ampere Altra
processors. It delivers 2-5x gains over alternative backend solutions.

6

Supported Inference Ops

Ampere Optimized Pytorch accelerates most common Pytorch ops that are used in various types of
models. Here is a list of accelerated ops and formats (Note: non-accelerated ops will still run
without a problem, at the original framework operator speed):

Layer FP32 Notes

Conv2d Y

Linear Y

MaxPool2d Y

AvgPool2d Y

AdaptiveAvgPool2d Y

Relu Y

Relu6 Y

LeakyRelu Y

Softmax Y

Gelu Y

Silu Y

Sigmoid Y

Tanh Y

Transpose Y

Permute Y

BatchNorm Y

LayerNorm Y

GroupNorm Y

InstanceNorm Y

Add Y Int version not optimized

Mul Y Int version not optimized

Div Y Int version not optimized

Pow Y Int version not optimized

Matmul Y

MM Y

7

BMM Y

PixelShuffle Y

View Y

Reshape Y

Squeeze Y

Unsqueeze Y

Flatten Y

Contiguous Y

Size Y One dimension case

PyTorch JIT Trace

While Pytorch Eager Execution provides excellent model building, programming, and debugging experience,
it is slower than graph execution. So, Torchscript is typically used for inference deployment. In the current
version of Ampere Optimized Pytorch, only Torchscript mode is accelerated.

To use Ampere Optimized Pytorch, conversion of Pytorch module to Torchscript is needed. There are two
ways to convert: torch.jit.script() or torch.jit.trace(input) API calls. See
https://pytorch.org/docs/stable/jit.html for more details. After converting to Torchscript user should call
torch.jit.freeze() to freeze the models and enable model optimizations for inference.

Threading

Ampere Optimized PyTorch controls the number of Ampere Optimized Pytorch intra_op threads with
torch.set_num_threads(). This controls both the number of threads used for ops delegated to Ampere
Optimized Pytorch as well as the ops running on default CPU backend.

Some default CPU backend ops (non-AIO) also need to set OMP_NUM_THREADS environment variable to
control the intra_op threads.

To correctly switch between Ampere Optimized Pytorch and Pytorch thread pools we recommend setting
following environmental variables to ensure best performance:

OMP_WAIT_POLICY=ACTIVE
GOMP_SPINCOUNT=10000
KMP_BLOCKTIME=1

Programming Tips

• In the first two inference passes, Ampere Optimized Pytorch performs runtime compilation of
PyTorch script and prepares Ampere Optimized Pytorch network. So, the latency of the first two
pass is expected to be longer. Subsequent passes will be accelerated.

• Ampere Optimized PyTorch provides much better latency scaling as core count increase,
comparing to other platforms. You can easily try the optimal number of cores with the above

https://pytorch.org/docs/stable/jit.html

8

set_num_threads() function that can give you the best price / performance, while meeting your
latency requirements.

• If any issues occur, Ampere AI team is ready to help. Typically, the first step is to get more debug
logs and send it to ai-support@amperecomputing.com. Please set environment variable
AIO_DEBUG_MODE=5 to capture low level logs.

We can also provide more in-depth profiling of your model to help enhancing performance to meet
your needs.

Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 /
www.amperecomputing.com
Ampere Computing, the Ampere Computing logo, Altra, and eMAG are registered trademarks of Ampere Computing.
Arm is a registered trademark of Arm Holdings in the US and/or elsewhere. All other trademarks are the property of their respective owners.
©2022 Ampere Computing. All rights reserved.

AMP 2019-0039

mailto:ai-support@amperecomputing.com
http://www.amperecomputing.com/

