
March 9, 2023Document Issue 1.00 Ampere Computing Proprietary

Key Benefits
• Cloud-Native: Ideal for web services that use common

cloud-native applications and are deployed in a
containerized environment.

• Scalable: Predictable performance for web services
even under high utilization. Real world web services
simulated on Ampere systems show better throughput
and lower latencies as compared to legacy x86
platforms.

• Developer Friendly: Robust ecosystem of applications
supported on Ampere processors and ease of
application portability to aarch64.

• Power Efficient: Competitive levels of raw performance
while consuming less than half the power compared to
the competition.

Ampere® Empowering the Future
Web services are built using cloud-native applications working
together to deliver content over the Internet. They are increasingly
built using microservices and can be easily deployed, managed, and
scaled using a containerized environment such as Kubernetes.
Cloud-native processors such as the Ampere Altra Max allow web
service workloads to scale out using multi-node clusters and run in
a predictable manner with minimal variance under increasing loads
while delivering exceptional energy efficiency.

Cloud-Native Advantage
Cloud-native is a modern approach to building and running
software applications that makes use of the flexibility, scalability,
and resilience of cloud computing. More and more developers are
embracing cloud-native microservices-based architecture to
develop and deploy applications such as web services to the cloud.

The web services used here simulate real-world services using many
of the popular cloud-native applications such as NGINX, Redis,
Memcached, and MongoDB. These applications run as
micro-services using a Kubernetes cluster with Docker containers.

Web Services on Ampere® Altra®

Real world solutions using popular

Cloud-Native applications on

Ampere® Altra®

Replicating Real-World Web Services
Web Services showcased here are deployed on a 3-node cluster of Ampere Altra Max servers. The load generator is a client
workload that simulates multiple simultaneous connections. The demo uses a Kubernetes deployment with the applications
running as a collection of multiple Docker containers. The number of replicas of each pod, CPU and memory allocation for the pods
is tuned to achieve the lowest P99 latency and highest throughput. At the end of the test, the load generator results indicate the
average and 99th percentile of latency or response times for all client connections as well as the throughput measured in terms of
requests per second.

DeathStarBench Social Network Application
The DeathStarBench Social network application running Ampere Altra Max servers simulates a Twitter-like application running at
scale with thousands of users connecting to the front-end using http, composing posts, tagging other users, adding media or URLs
to the posts, and saving to the user and home timelines.

For additional information, visit the Ampere Solutions Portal.

Ampere Computing reserves the right to make changes to its products, its datasheets, or related documentation, without notice and warrants its products solely pursuant to its
terms and conditions of sale, only to substantially comply with the latest available datasheet.

Ampere, Ampere Computing, the Ampere Computing and ‘A’ logos, and Altra are registered trademarks of Ampere Computing.

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All other trademarks are the property of their respective holders.

Copyright © 2023 Ampere Computing. All Rights Reserved.

Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 / www.amperecomputing.com

AMP 2023-0026

Scalable Deployment Using Kubernetes
The Social network application can be easily deployed on a Kubernetes cluster using helm charts. This allows the application to scale
multiple servers as the load on the service increases. The front-end and application layers of DeathStarBench/socialNetwork use
micro-services and are run as Pods on a Kubernetes cluster allowing multiple replicas of the Pods to be deployed. Database scaling
for the back-end caching layers (Redis, Memcached) and database (MongoDB) is implemented using clustering and sharding. The
goal is to benchmark the performance of a real-world social network website and determine the peak performance using a load
testing service WRK2 which emulates a large numbers of users visiting the website and evaluating how well the service responds
under these stressful conditions.

https://solutions.amperecomputing.com/solutions/ampere-ai
https://amperecomputing.com/solutions/web-services

