
Ampere® Computing / 4655 Great America Parkway, Suite 601/ Santa Clara CA. 95054 / amperecomputing.com 1

ZEISS Demonstrates the Power of Scalable
Workflows with Ampere® Altra® and SpinKube
By Scott Fulton III

DEVELOPER STORY

Background: The Overprovisioning Conundrum

It’s still one of the most common practices in infrastructure
resource management today: overprovisioning. Before the
advent of Linux containers and workload orchestration, IT
managers were told that overprovisioning their virtual
machines was the proper way to ensure resources are available
at times of peak demand. Indeed, resource oversubscription
used to be taught as a “best practice” for VM administrators.
The intent at the time was to help admins maintain KPIs for
performance and availability while limiting the risks involved
with overconsumption of compute, memory, and storage.

Because of their extensive experience with object cache at
AWS, the Momento team settled on caching for their initial
product. They have since expanded their product suite to
include services like pub-sub message buses. The Momento
serverless cache, based on the Apache Pelikan open-source
project, enables its customers to automate away the resource
management and optimization work that comes with running a
key-value cache yourself.

At first, Kubernetes promised to eliminate the need for
overprovisioning entirely by making workloads more granular,
more nimble, and easier to scale. But right away, platform
engineers discovered that using Kubernetes’ autoscaler add-on
to conjure new pods into existence at the very moment they’re
required consumed minutes of precious time. From the end
user’s point of view, minutes might as well be hours.

Today, there’s a common provisioning practice for Kubernetes
called paused pods. Simply put, it’s faster to wake up sleeping
pods than create new ones on the fly. The practice involves
instructing cluster autoscalers to spin up worker pods well
in advance of when they’re needed. Initially, these pods are
delegated to worker nodes where other pods are active. Al-
though they’re maintained alongside active pods, they’re given
low priority. When demand increases and the workload needs
scaling up, the status of a paused pod is changed to pend-
ing. This triggers the autoscaler to relocate it to a new worker
node where its priority is elevated to that of other active pods.
Although it takes just as much time to spin up a paused pod as
a standard one, that time is spent well in advance. Thus, the
latency involved with spinning up a pod gets moved to a place
in time where it doesn’t get noticed.

Pod pausing is a clever way to make active workloads seem
faster to launch. But when peak demand levels become orders
of magnitude greater than nominal demand levels, the sheer
volume of overprovisioned, paused pods becomes
cost prohibitive.

SNAPSHOT

Challenge - The cost of maintaining a system
capable of processing tens of thousands of
near-simultaneous requests, but which spends
greater than 90 percent of its time in an idle state,
cannot be justified. Containerization promised the
ability to scale workloads on demand, which includes
scaling down when demand is low. Maintaining many
pods among a plurality of clusters just so the system
doesn’t waste time in the upscaling process
contradicts the point of workload containerization.

Solution - Fermyon produces a platform called
SpinKube that leverages WebAssembly (WASM),
originally created to execute small elements of
bytecode in untrusted web browser environments, as
a means of executing small workloads in large
quantities in Kubernetes server environments.
Because WASM workloads are smaller and easier to
maintain, pods can be spun up just-in-time as network
demand rises without consuming extensive time in the
process. And because WASM consists of
pre-compiled bytecode. It can be executed on server
platforms powered by Ampere® Altra® without all the
multithreading and microcode overhead that other
CPUs typically bring to their environments — over-
head that would, in less compute-intensive circum-
stances such as these, be unnecessary anyway.

Implementation - As a demonstration of SpinKube’s
effectiveness, ZEISS Group’s IT engineers partnered
with Ampere, Fermyon, and Microsoft to produce a
system that spins up new WASM pods as demand
rises in a just-in-time scenario. The demonstration
proves that, in practice, a customer order processing
system running on SpinKube, compared to a
counterpart running with conventional Kubernetes
pods, yields dramatic benefits. According to Kai
Walter, Distinguished Architect at ZEISS Group,

“When we looked at a runtime-heavy workload with
Node.js, we could process the same number of orders
in the same time with an Ampere processor VM
environment for 60% cheaper than an alternative x86
VM instance”

Kai Walter, Distinguished Architect, ZEISS Group

Source: How ZEISS uses SpinKube and Ampere on
Azure to Reduce Cost bt 60%

https://www.youtube.com/watch?v=ud3UKLNWh6c
https://www.youtube.com/watch?v=ud3UKLNWh6c

Ampere® Computing / 4655 Great America Parkway, Suite 601/ Santa Clara CA. 95054 / amperecomputing.com 2

ZEISS Stages a Breakthrough

This is where ZEISS found itself. Founded in 1846, ZEISS
Group is the world leader in scientific optics and
optoelectronics, with operations in over 50 countries. In
addition to serving consumer markets, ZEISS’ divisions serve
the industrial quality and research, medical technology, and
semiconductor manufacturing industries. The behavior of
customers in the consumer markets can be very correlated,
resulting in occasional large waves of orders with a lull in
activity in between. Because of this, ZEISS’ worldwide order
processing system can receive as few as zero customer or-
ders at any given minute, and over 10,000 near-simultaneous
orders the next minute.

Overprovisioning isn’t practical for ZEISS. The logic for an
order processing system is far more mundane than, say, a
generative AI-based research project. What’s more, it’s
needed only sporadically. In such cases, overprovisioning
involves allocating massive clusters of pods, all of which
consume valuable resources, while spending more than 90
percent of their existence essentially idle. What ZEISS
requires of its digital infrastructure instead are:

This platform incorporates the Spin framework, along with the
containerd-shim-spin component that enables WASM
workloads to be orchestrated in Kubernetes by way of the
runwasi library. Using these components, a WASM bytecode
application may be distributed as an artifact rather than a
conventional Kubernetes container image. Unlike a container,
this artifact is not a self-contained system packaged
together with all its dependencies. It’s literally just the
application compiled into bytecode. After the Spin app is
applied to its designated cluster, the Spin operator provisions
the app with the foundation, accompanying pods, services,
and underlying dependencies that the app needs to function as
a container. This way, Spin re-defines the WASM artifact as a
native Kubernetes resource.

Once running, the Spin app behaves like a serverless
microservice — meaning, it doesn’t have to be addressed by its
network location just to serve its core function. Yet Spin
accomplishes this without the need to add extra overhead to
the WASM artifact — for instance, to make it listen for event
signals. The shim component takes care of the listening role.
Spin adapts the WASM app to function within a Kubernetes
pod, so the orchestration process doesn’t need to
change at all.

For its demonstration, ZEISS developed three Spin apps in
WASM: a distributor and two receivers. A distributor app
receives order messages from an ingress queue, then two
receiver apps process the orders, the first handling simpler or-
ders that would take less time, and the second handling more
complex orders. The Fermyon Platform for Kubernetes manag-
es the deployment of WASM artifacts with the Spin framework.
The system is literally that simple.

In practice, according to Kai Walter, Distinguished Architect
with ZEISS Group, a SpinKube-based demonstration system
could process a test data set of 10,000 orders at approximately
60% less cost for Rust and TypeScript sample applications by
running them on Ampere-powered Dpds v5 instances on Azure.

Migration without Relocation

Working with Microsoft and Fermyon, ZEISS developed an
iterative migration scheme enabling it to deploy its Spin apps in
the same Ampere arm64-based node pools ZEISS was already
using for its existing, conventional Kubernetes system. The
new Spin apps would then run in parallel with the old apps
without having to first create new, separate network paths, and
then devise some means of A/B splitting ingress traffic
between those paths.

• Worker clusters with much lower profiles, consuming far 	
 less energy while slashing operational costs
• Behavior management capabilities that allow for automatic 	
 and manual alterations to cloud environments in response 	
 to rapidly changing network conditions
• Planned migration in iterative stages, enabling the earlier 	
 order processing system to be retired on a pre-determined 	
 itinerary over time, rather than all at once

“The whole industry is talking about mental load at the
moment. One part of my job... is to take care that we do not

overload our teams. We do not make huge jumps in
implementing stuff. We want our teams to reap the benefits,
but without the need to train them again. We want to adapt,

to iterate — to improve slightly.”
Kai Walter

Distinguished Architect, ZEISS Group

The solution to ZEISS’ predicament may come from a source
that, just three years ago, would have been deemed unlikely,
if not impossible: WebAssembly (WASM). It’s designed to run
binary, untrusted bytecode on client-side web
browsers — originally, pre-compiled JavaScript. In early
2024, open source developers created a framework for
Kubernetes called Spin. This framework enables
event-driven, serverless microservices to be written in Rust,
TypeScript, Python, or TinyGo, and deployed in low-overhead
server environments with cold start times measurable only
in milliseconds.

Fermyon and Microsoft are principal maintainers of the
SpinKube platform. This platform incorporates the Spin
framework, along with the containerd-shim-spin component
that enables Fermyon and Microsoft are principal maintainers
of the SpinKube platform.

“We would not create a new environment. That was the
challenge for the Microsoft and Fermyon team. We

expected to reuse our existing Kubernetes cluster and, at
the point where we see fit, we will implement this new path

in parallel to the old path. The primitives that SpinKube
delivered allows for that kind of co-existence. Then we can

reuse Arm node pools for logic that was not allowed on
Arm chips before.”

Kai Walter

Distinguished Architect, ZEISS Group

Ampere® Computing / 4655 Great America Parkway, Suite 601/ Santa Clara CA. 95054 / amperecomputing.com 3

Generalized Order Processing System

WASM apps use memory, compute power, and system
resources much more conservatively.
(Remember, WASM was created for web browsers, which have
minimal environments.) As a result, the entire order
processing system can run on two of the smallest, least
expensive instance classes available in Azure: Standard DS2
(x86) and D2pds v5 (Ampere Altra 64-bit), both with just 2
vCPUs per instance. However, ZEISS discovered in this pilot
project that by moving to WASM applications running on
SpinKube, it could transparently change the underlying
architecture from x86 instances to Ampere-based D2pds
instances, reducing costs by approximately60 percent.

SpinKube and Ampere Altra make it feasible for global
organizations like ZEISS to stage commodity workloads with
high scalability requirements, on dramatically less expensive
cloud computing platforms, potentially cutting costs by
greater than one-half without impacting performance.

Additional Resources
For an in-depth discussion on ZEISS’ collaboration with Ampere,
Fermyon, and Microsoft, see this video on Ampere’s YouTube channel:
How ZEISS Uses SpinKube and Ampere on Azure to Reduce Costs
by 60%.

To find more information about optimizing your code on Ampere CPUs,
To find more information about optimizing your code on Ampere CPUs,
check out our tuning guides in the Ampere Developer Center. You can
also get updates and links to more insightful content by signing up for
Ampere’s monthly developer newsletter.

If you have questions or comments about this case study, join the
Ampere Developer Community, where you’ll find experts in all fields
of computing ready to answer them. Also, be sure to subscribe to
Ampere Computing’s YouTube channel for more developer-focused
content.

References
•	 It’s Time to Reboot Software Development by Matt Butcher,

CEO, Fermyon
•	 Introducing Spin 3.0 by Radu Matei and Michelle Dhanani,

Fermyon blog
•	 Building a Serverless Python WebAssembly App with Spin by

Matt Butcher, CEO of Fermyon
•	 Taking Spin for a spin on AKS by Kai Walter, Distinguished

Architect, ZEISS Group
•	 Cloud Native Processors & Efficient Compute — Ampere

Developer Summit session featuring Ampere chief evange-
list Sean Varley, ScyllaDB CEO Dor Laor, and Fermyon senior
software engineer Kate Goldenring, conducted September 26,
2024

•	 Integrating serverless WebAssembly with SpinKube and cloud
services — video featuring Sohan Maheshwar, Lead Developer
Advocate, AuthZed

Disclaimer
All data and information contained in or disclosed by this document
are for informational purposes only and are subject to change. This
document is not to be used, copied, or reproduced in its entirety,
or presented to others without the express written permission of
Ampere®. © 2024 Ampere® Computing LLC. All rights reserved.
Ampere®, Ampere® Computing, Altra and the Ampere® logo are all
trademarks of Ampere® Computing LLC or its affiliates. Other product
names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

https://www.youtube.com/watch?v=ud3UKLNWh6c&t=685s
https://www.youtube.com/watch?v=ud3UKLNWh6c&t=685s
https://amperecomputing.com/tuning-guides
https://amperecomputing.com/newsletter
https://amperecomputing.com/newsletter
https://community.amperecomputing.com/
https://community.amperecomputing.com/
https://www.youtube.com/@AmpereComputing
https://www.fermyon.com/blog/it-is-time-to-reboot-software-development
https://www.fermyon.com/blog/introducing-spin-v3
https://dev.to/technosophos/building-a-serverless-webassembly-app-with-spin-5dh9
https://dev.to/kaiwalter/taking-spin-for-a-spin-on-aks-2lf1
https://www.youtube.com/watch?v=9lzODWPvRxQ&list=PLSX4wtBEnxjqZJSPDp206XmlzWp7smO9T&index=5&t=19s
https://www.youtube.com/watch?v=z3PBWddPwH4
https://www.youtube.com/watch?v=z3PBWddPwH4

