MySQL Server Workload Brief
Open-source relational database management system.
The Ampere® Altra® and Ampere® Altra® Max processors are complete system-on-chip (SOC) solutions built for cloud native applications. Ampere Altra Max supports up to 128 cores. In addition to incorporating a large number of high-performance cores, the innovative architecture delivers predictable high performance, linear scaling and high energy efficiency.
MySQL is the most popular open source Relational Database Management System (“RDBMS”), which is developed, distributed, and supported by Oracle Corporation. It is used by most modern websites and web-based services as a convenient and fast access storage and retrieval solution for large volumes of data. MySQL Database Server is very fast, reliable, scalable, and easy to use.
In this workload brief, we compare Ampere Altra Max M128-30 to Intel® Xeon® 8380 and AMD EPYC™ 7763 processors running MySQL while measuring the throughput and latencies on each of these processors.
Ampere Altra Max is designed to deliver exceptional performance for cloud native applications like MySQL. With an innovative architectural design, operating at consistent frequencies, and using single-threaded cores, applications will be more resistant to noisy neighbor issues. This allows workloads to run in a predictable manner with minimal variance under increasing loads.
The processors are also designed to deliver exceptional energy efficiency. This translates to industry leading performance/watt capabilities and a lower carbon footprint.
Cloud Native: Designed from the ground up for 'born in the cloud' workloads like MySQL, Ampere Altra Max can deliver up to 36% higher performance than the best x86 servers
Energy Efficiency: With up to 128 energy-efficient Arm cores, Ampere Altra Max can consume up to 32% lower power while maintaining competitive levels of performance.
Lower Carbon Footprint: Industryleading performance and high energy efficiency result in Ampere Altra Max demonstrating up to 2.8x higher Performance/watt, leading to lower TCO and a smaller carbon footprint.
Consistency & Predictability: Singlethreaded cores running at fixed maximum frequencies ensure linear scaling under stringent SLAs and at high loads while running MySQL
Memory
Connectivity
System
Performance
Sysbench is a multi-threaded benchmark tool. The tool can create a simple database schema, populate database tables with data, and generate multi-thread load (SQL queries) towards the database server.
The Sysbench OLTP load consists of the following seven basic SQL queries:
We are running six tests which use above SQL queries as follows:
Sysbench benchmark is deployed on different CPU socket with MySQL Server and database connection is through TCP/IP socket interface over loopback IP address.
MySQL Server database storage is configured with RAMdisk filesystem and will consume whole socket cpu cores resources to handle request from Sysbench.
Since it is realistic to measure throughput under a specified Service Level Agreement (SLA), we have used a 95th percentile latency (p.95) of 1 millisecond. This ensures that 95 percent of the requests have a response time of 1 ms in the worst case.
We run the benchmark above on each platform and collect six test cases’ TPS results at P.95 of 1 millisecond and calculate GEOMEAN as a platform’s final score.
MySQL Performance and Energy Efficiency
As can be seen in the chart above, we observed up to 36% advantage in performance on Ampere Altra Max compared to Intel 8380, and up to a 29% advantage in performance compared to AMD 7763. (Fig. 1)
For large-scale cloud deployments, performance/Watt (i.e. energy efficiency) is an important metric in addition to raw performance. Ampere Altra Max processors have 2.02x better performance/Watt under a specified SLA than that on Intel servers and 1.87x higher performance/watt compared to that on AMD servers.(Fig. 2)
MySQL is the most popular Relational Database Management System today. MySQL Database Server is very fast, reliable, scalable, and easy to use Ampere Altra Max are designed to deliver exceptional performance and energy efficiency for cloud native applications. In Ampere’s testing, these processors demonstrated up to 36% performance improvements and they achieved up to 2.02x energy efficiency improvements.
All data and information contained herein is for informational purposes only and Ampere reserves the right to change it without notice. This document may contain technical inaccuracies, omissions and typographical errors, and Ampere is under no obligation to update or correct this information. Ampere makes no representations or warranties of any kind, including but not limited to express or implied guarantees of noninfringement, merchantability, or fitness for a particular purpose, and assumes no liability of any kind. All information is provided “AS IS.” This document is not an offer or a binding commitment by Ampere. Use of the products contemplated herein requires the subsequent negotiation and execution of a definitive agreement or is subject to Ampere’s Terms and Conditions for the Sale of Goods.
System configurations, components, software versions, and testing environments that differ from those used in Ampere’s tests may result in different measurements than those obtained by Ampere.
©2022 Ampere Computing. All Rights Reserved. Ampere, Ampere Computing, Altra and the ‘A’ logo are all registered trademarks or trademarks of Ampere Computing. Arm is a registered trademark of Arm Limited (or its subsidiaries). All other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 / amperecomputing.com